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1 Introduction

The propositional �-calculus is a powerful language for expressing properties of transition

systems by using least and greatest �xpoint operators. Recently, the �-calculus has gener-

ated much interest among researchers in computer-aided veri�cation. This interest stems

from the fact that many temporal and program logics can be encoded into the �-calculus.

In addition, important relations between transition systems, such as weak and strong bisim-

ulation equivalence, also have �xpoint characterizations [17].

Another source of interest in the �-calculus comes from the existence of e�cient model

checking algorithms for this formalism. As a consequence, veri�cation procedures for many

temporal and modal logics can be succinctly described by translating into the �-calculus.

Wide-spread use of binary decision diagrams has made �xpoint based algorithms even more

important, since methods that require the manipulation of individual states do not take

advantage of this representation.
Several versions of the propositional �-calculus have been described in the literature, and

the ideas in this paper will work with any of them. For the sake of concreteness, we will use
the propositional �-calculus of Kozen [12]. Closed formulas in this logic evaluate to sets of
states. A considerable amount of research has focused on �nding techniques for evaluating

such formulas e�ciently, and many algorithms have been proposed for this purpose. These
algorithms generally fall into two categories, local and global.

Local procedures are designed for proving that a speci�c state of the transition system
satis�es the given formula. Because of this, it is not always necessary to examine all the
states in the transition system. However, the worst-case complexity of these approaches is

generally larger than the complexity of the global methods. Tableau-based local approaches
have been developed by Cleaveland [8], Stirling and Walker [19], and Winskel [21]. More
recently, Andersen [1] and Larsen [13] have developed e�cient local methods for a subset of
the �-calculus. Mader [15] has also proposed improvements to the tableau-based method of
Stirling and Walker that seem to increase its e�ciency.

In this paper, we restrict ourselves to global model checking procedures. Global pro-

cedures generally work bottom-up through the formula, evaluating each subformula based
on the values of its subformulas. Iteration is used to compute the �xpoints. Because of

�xpoint nesting, a naive global algorithm may require about O(nk) iterations to evaluate

a formula, where n is the number of states in the transition system and k is the depth of
nesting of the �xpoints. Emerson and Lei [11] improve on this by observing that successively

nested �xpoints of the same type do not increase the complexity of the computation. They
formalize this observation using the notion of alternation depth and give an algorithm re-

quiring only about O(nd) iterations, where d is the alternation depth. In an implementation,

bookkeeping and set manipulations may add another factor of n or so to the time required.
Subsequent work by Cleaveland, Klein, Ste�en, and Andersen [1, 9, 10] has reduced this

extra complexity, but the overall number of iterations has remained about O(nd). In [14]
the authors have improved on this by giving an algorithm that uses only O(nd=2) iterations

to compute a formula with alternation depth d, thus requiring only about the square root

of the time needed by earlier algorithms.
This paper describes the propositional �-calculus and general algorithms for evaluat-
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ing �-calculus formulas. Examples of veri�cation problems that can be encoded within the

language of the �-calculus are also provided. The remainder of this paper is organized as

follows. A formal syntax and semantics for the propositional �-calculus is given in Sec-

tion 2. Section 3 discusses di�erent algorithms for evaluation of �-calculus formulas and

their complexities. A brief description of Ordered Binary Decision Diagrams (OBDDs) is

given in Section 4. Section 5 presents the algorithm for encoding �-calculus formulas with

OBDDs. The syntax and semantics for CTL and for CTL with fairness constraints is given

in Section 6, while a translation of these logics into the �-calculus is given in Section 7. Def-

initions for di�erent kinds of simulation preorders and bisimulation equivalences are given

in Section 8 along with encodings for these relations in the �-calculus. Finally, Section 9

concludes the paper and discusses some open problems.

2 The Propositional �-Calculus

In the propositional �-calculus, formulas are constructed as follows:

� atomic propositions AP = fp; p1; p2; : : :g

� relational variables VAR = fR, R1, R2, : : :g

� logical connectives :�, � ^ � and � _ �

� modal operators hai� and [a]� , where a is an action in the set Act = fa; b; a1; a2; : : :g

� �xpoint operators �Ri:(� � �) and �Ri:(� � �). Relational variables bound by the �xpoint
operators must be in the scope of the even number of negations.

There is a stardand notion of free and bound variables (by �xpoint operators) in the formu-
las. Closed formulas are the formulas without free variables. Formulas in this calculus are
interpreted relative to a transition system M = (>; T; L) that consists of:

� a nonempty set of states >

� a mapping L : AP ! 2> that takes each atomic proposition to some subset of > (the
states where the proposition is true)

� a mapping T : Act ! 2>�> that takes each action to a binary relation over > (the

state changes that can result from making an action)

The intuitivemeaning of the formula hai� is \it is possible to make an a-action and transition
to a state where � holds". [�] is the dual of h�i; for [a]�, the intended meaning is that \�
holds in all states reachable (in one step) by making an a-action." The � and � operators are

used to express least and greatest �xpoints, respectively. To emphasize the duality between

least and greatest �xpoints, we write the empty set of states as ?. Also, in the rest of this
paper, we will use the more intuitive notation s

a
! s0 to mean (s; s0) 2 T (a).

Formally, a formula � is interpreted as a set of states in which � is true. We write

such set of states as [[�]]M e, where M is a transition system and e : VAR ! 2> is an
environment. We denote by e [R S] a new environment which is the same as e except

that e [R  S] (R) = S. The set [[�]]M e is de�ned recursively as follows.
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� [[p]]M e = L(p)

� [[R]]M e = e(R)

� [[:�]]M e = >� [[�]]M e

� [[� ^  ]]M e = [[�]]M e \ [[ ]]M e

� [[� _  ]]M e = [[�]]M e [ [[ ]]M e

� [[hai�]]M e = f s j 9t [s
a
! t and t 2 [[�]]M e] g

[[[a]�]]M e = f s j 8t [s
a
! t implies t 2 [[�]]M e] g

� [[�R:�]]M e is the least �xpoint of the predicate transformer � : 2> ! 2> de�ned by:

� (S) = [[�]]M e [R S]

� The interpretation of �R:� is similar, except that we take the greatest �xpoint.

Within formulas, the negation is restricted in use, and so the �xpoints are guaranteed
to be well-de�ned. Formally, every logical connective except negation is monotonic (�! �0

implies �^ !�0^ , �_ !�0_ , hai�!hai�0, and [a]�![a]�0), and all the negations can
be pushed down to the atomic propositions using De Morgan's laws and dualities (:[a]� �
hai:�, :hai� � [a]:�, :�R:�(R) � �R::�(:R), :�R:�(R) � �R::�(:R)). Since bound

variables are under even number of negations, they will be negation free after this process.
Thus, each possible formula in a �xpoint operator is monotonic and hence each possible �
is also monotonic (S � S 0 implies � (S) � � (S0)). This is enough to ensure the existence of
the �xpoints [20]. Furthermore, since we will be evaluating formulas over �nite transition
systems, monotonicity of � implies that � is also [-continuous and \-continuous, and hence

the least and greatest �xpoints can be computed by iterative evaluation:

[[�R:�]]M e =
[

i

� i(?) [[�R:�]]M e =
\

i

� i(>):

(� i(S) can be de�ned recursively as � 0(S) = S and � i+1(S) = � (� i(S))) Since the domain

> is �nite, the iteration must stop after a �nite number of steps. More precisely, for some
i � j>j, the �xpoint is equal to � i(?) (for a least �xpoint) or � i(>) (for a greatest �xpoint).
To �nd the �xpoint, we repeatedly apply � starting from ? or from > until the result does
not change.

The alternation depth of a formula is intuitively equal to the number of alternations in the

nesting of least and greatest �xpoints, when all negations are applied only to propositions.

There are other more elaborate de�nitions of alternation depth [1, 2, 9], that take into

account the possibility that nested �xpoints may still be independent. Such �xpoints do not
depend on the value of approximations to outer �xpoints. Consequently, they only need to

be evaluated once. This type of nesting does not increase the e�ective alternation depth.

However, to simplify our presentation we will use the de�nition of alternation depth given

by Emerson and Lei [11]. Formally, the alternation depth is de�ned as follows:
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De�nition 2.1

� The alternation depth of an atomic proposition or a relational variable is 0;

� The alternation depth for formulas like � ^  , � _  , hai�, etc., is the maximum

alternation depth of the subformulas � and  .

� The alternation depth of �R:� is the maximum of: one, the alternation depth of �,

and one plus the alternation depth of any top-level �-subformulas of �. A top-level

�-subformula of � is a subformula �R0: of � that is not contained within any other

�xpoint subformula of �. The alternation depth of �R:� is similarly de�ned.

Example 2.1 Consider the following formula which will be discussed in Section 7.

�Y:(P ^ hai [�X:(P ^ haiX) _ (h ^ Y )])

This formula expresses the property \P holds continuously along some fair a-path" and has

an alternation depth of two.

Because of the duality,

�R:�(� � � ; R; � � �) = :�R::�(� � � ;:R; � � �)

we could have de�ned the propositional �-calculus with just the least �xpoint operator and
negation. In order to give a succinct description of certain constructions we sometimes use
the dual formulation. However, the concept of alternation depth is easier to de�ne using the
formulation given earlier.

3 Evaluating Fixpoint Formulas

We de�ne model checking as a technique of verifying a model relative to its speci�cation
in the �-calculus. This is the same as evaluating a formula in a model, i.e., �nding the set of
states of the model where the formula is true. Figure 1 presents the naive, straightforward,
recursive algorithm for evaluating �-calculus formulas. The time complexity of the algorithm

in Figure 1 is exponential in the length of the formula. To see this, we analyze the behavior

of the algorithm when computing nested �xpoints. The algorithm computes �xpoints by
iteratively computing approximations. These successive approximations form a chain ordered

by inclusion. Since the number of strict inclusions in such a chain is limited by the number
of possible states, we have that the loop will execute at most n + 1 times, where n = j>j.

Each iteration of the loop involves a recursive call to evaluate the body of the �xpoint with a
di�erent value for the �xpoint variable. If in turn, the subformula being evaluated contains

a �xpoint, the evaluation of its body will also involve a loop containing up to n+1 recursive
calls. Thus, the total number of recursive calls will be O(n2). In general, the body of the

innermost �xpoint will be evaluated O(nk) times where k is the maximum nesting depth of

�xpoint operators in the formula.
Note that we have only considered the number of iterations required when evaluating

�xpoints and not the number of steps required to evaluate a �-calculus formula. While each
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1 function eval(�, e)

2 if � = p then return L(p)

3 if � = R then return e(R)

4 if � =  1 ^  2 then

5 return eval( 1; e)\ eval( 2; e)

6 if � =  1 _  2 then

7 return eval( 1; e)[ eval( 2; e)

8 if � = hai then

9 return f s j 9t [s
a
! t and t 2 eval( ; e)] g

10 if � = [a] then

11 return f s j 8t [s
a
! t implies t 2 eval( ; e)] g

12 if � = �R: (R) then

13 Rval := ?

14 repeat
15 Rold := Rval

16 Rval := eval( ; e [R Rval])
17 until Rval = Rold

18 return Rval

19 if � = �R: (R) then
20 Rval := >
21 repeat
22 Rold := Rval

23 Rval := eval( ; e [R Rval])

24 until Rval = Rold

25 return Rval

Figure 1: Pseudocode for the naive algorithm

�xpoint may only take O(n) iterations, each individual iteration can take up to O(jM jj�j)
steps, where M = (>; T; L) is the model and jM j = j>j +

P
a2Act jT (a)j. In general, then,

this algorithm has time complexity O[jM jj�jnk].

A result by Emerson and Lei demonstrates that the value of a �xpoint formula can be

computed with O((j�jn)d) iterations, where d is the alternation depth of �. Their algorithm

is similar to the straightforward one described above, except when a �xpoint is nested directly

within the scope of another �xpoint of the same type. In this case, the �xpoints are computed
slightly di�erently.

A simple example will su�ce to demonstrate the idea. When discussing the evaluation
of �xpoint formulas, we will use R1; : : : ; Rk as the �xpoint variables, with R1 being the

outermost �xpoint variable and Rk being the innermost. We will use the notation R
i1���ij
j

to denote the value of the ij-th approximation for Rj after having computed the il-th ap-
proximation for Rl for 1 � l < j. We use ij = ! to indicate that we are considering the
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�nal approximation (the actual �xpoint value) for Rj. For example, R!
1 is the value of the

�xpoint for R1 and R
30
2 is the initial approximation for R2 after having computed the third

approximation for R1. Consider the formula

�R1: 1(R1; �R2: 2(R1; R2)):

The subformula �R2: 2(R1; R2) de�nes a monotonic predicate transformer � taking one set

(the value of R1) to another (the value of the least �xpoint of R2). When evaluating the outer

�xpoint, we start with the initial approximation R0
1 = ? and then compute � (R0

1). This

is done by iteratively computing approximations for the inner �xpoint also starting from

R00
2 = ? until we reach a �xpoint R0!

2 . Now R1 is increased to R1
1, the result of evaluating

 1(R
0
1; R

0!
2 ). We next compute the least �xpoint � (R1

1). Since R0
1 � R1

1, by monotonicity

we know that � (R0
1) � � (R

1
1). Now note that the following lemma holds:

Lemma 3.1 If S �
S
i �

i(?) then
S
i �

i(S) =
S
i �

i(?).

In other words, to compute a least �xpoint, it is enough to start iterating with any approxi-

mation known to be below the �xpoint. Thus , we can start iterating withR10
2 = R0!

2 = � (R0
1)

instead of R10
2 = ?. When we compute the �xpoint R1!

2 , we next compute the new approx-
imation to R1, which is R2

1, the result of evaluating  1(R
1
1; R

1!
2 ). Again, we know that

R1
1 � R2

1 which implies that � (R1
1) � � (R2

1). But � (R1
1) = R1!

2 , the value of the last inner
�xpoint computed, and � (R2

1) = R2!
2 the �xpoint to be computed next. Again, we can start

iterating with any approximation below the �xpoint. So to compute R2!
2 we begin with

R20
2 = R1!

2 = � (R1
1). In general, when computing Ri!

2 we always begin with Ri0
2 = R

(i�1)!
2 .

Since we never restart the inner �xpoint computation, we can have at most n increases in
the value of the inner �xpoint variable. Overall, we only need O(n) iterations to evaluate
this expression, instead of O(n2). In general, this type of simpli�cation leads to an algorithm
that computes �xpoint formulas in time exponential in the alternation depth of the formula
since we only reset an inner �xpoint computation when there is an alternation in �xpoints

in the formula.
Thus, this algorithm for evaluating �-calculus formulas is identical to the naive algorithm

except in the case when the main connective is a �xpoint operator. The pseudocode for this
algorithm is given in Figure 2. Note that unlike the naive algorithm, the approximation

values A[i] are not reset when evaluating the subformula �Ri: (Ri) (�Ri: (Ri)). Instead,

we reset all top-level greatest (least) �xpoint variables contained in  . Recall that by the
top-level �xpoints in a formula we mean all the �xpoints of the same type (� or �) that are

not in the scope of the other type of �xpoints. This guarantees that when we evaluate a
top-level �xpoint subformula of the same type, we do not start the computation from ? or

>, but from the previously computed value as in our example.
In [14] the authors observe that by storing even more intermediate values, the time

complexity for evaluating �xpoint formulas can be reduced to O(nbd=2c+1) where again d is
the alternation depth of the formula. To simplify our discussion, we consider formulas with

strict alternation of �xpoints. We present a small example to illustrate the idea behind this

algorithm.
Consider the formula:

�R1: 1(R1; �R2: 2(R1; R2; �R3: 3(R1; R2; R3))):
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1 function eval(�, e)

2 N := The number of �xpoint operators in �

3 for i := 1 to N do A[i] := if the i-th �xpoint of � is � then ? else >

4 return evalrec(�, e)

Where evalrec is de�ned recursively as

1 function evalrec(�, e)

2 if � = p then return L(p)

3 if � = R then return e(R)

4 if � =  1 ^  2 then
5 return evalrec( 1; e)\ evalrec( 2; e)

6 if � =  1 _  2 then
7 return evalrec( 1; e)[ evalrec( 2; e)
8 if � = hai then
9 return f s j 9t [s

a
! t and t 2 evalrec( ; e)] g

10 if � = [a] then

11 return f s j 8t [s
a
! t implies t 2 evalrec( ; e)] g

12 if � = �Ri: (Ri) then
13 For all top-level greatest �xpoint subformulas �Rj: 

0(Rj) of  
14 do A[j] := >
15 repeat

16 Rold := A[i]
17 A[i] := evalrec( ; e [Ri  A[i]])
18 until A[i] = Rold

19 return A[i]

20 if � = �Ri: (Ri) then

21 For all top-level least �xpoint subformulas �Rj : 
0(Rj) of  

22 do A[j] := ?
23 repeat

24 Rold := A[i]

25 A[i] := evalrec( ; e [Ri  A[i]])
26 until A[i] = Rold

27 return A[i]

Figure 2: Pseudocode for the Emerson and Lei algorithm

To compute the outer �xpoint, we start with R1 = ?, R2 = > and R3 = ?. As in the

previous case, we denote these values by R0
1, R

00
2 , and R000

3 respectively. The superscript
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on Rk gives the iteration indices for the �xpoints involving R1, : : :Rk. We then iterate to

compute the inner �xpoint; call the value of this �xpoint R00!
3 . We now compute the next

approximation R01
2 for R2 by evaluating  2(R

0
1; R

00
2 ; R

00!
3 ) and go back to the inner �xpoint.

Eventually, we reach the �xpoint for R2, having computed R00
2 , R00!

3 , R01
2 , R01!

3 , : : : , R0!
2 ,

R0!!
3 . Now we proceed to R1

1 =  1(R
0
1; R

0!
2 ; R

0!!
3 ). We know that R0

1 � R
1
1, and we are now

going to compute R1!
2 . Note that the values R0!

2 and R1!
2 are given by

R0!
2 = �R2: 2(R

0
1; R2; �R3: 3(R

0
1; R2; R3))

and

R1!
2 = �R2: 2(R

1
1; R2; �R3: 3(R

1
1; R2; R3)):

By monotonicity, we know that R1!
2 will be a superset of R0!

2 . However, since R2 is computed

by a greatest �xpoint, this information does not help; we still must start computing with
R10

2 = >. At this point, we begin to compute the inner �xpoint again. But now let us look
at R00!

3 and R10!
3 . We have

R00!
3 = �R3: 3(R

0
1; R

00
2 ; R3)

and
R10!

3 = �R3: 3(R
1
1; R

10
2 ; R3):

Since R0
1 � R1

1 and R00
2 � R10

2 , monotonicity implies that R00!
3 � R10!

3 . Now R3 is a least
�xpoint, so starting the computation of R10!

3 anywhere below the �xpoint value is acceptable.
Thus, we can start the computation for R10!

3 with R100
3 = R00!

3 . Since R00!
3 is in general

larger than ?, we obtain faster convergence. In addition, we have

R01
2 =  2(R

0
1; R

00
2 ; R

00!
3 )

and
R11

2 =  2(R
1
1; R

10
2 ; R

10!
3 )

Since R0
1 � R1

1, R
00
2 � R10

2 , and R00!
3 � R10!

3 , we will have R01
2 � R11

2 . This means that we
can use the same trick when computing R11!

3 : we start the computation from R110
3 = R01!

3 .
And again, since R0

1 � R
1
1, R

01
2 � R11

2 , and R01!
3 � R11!

3 , we will have R02
2 � R

12
2 . In general,

we will have R0j
2 � R

1j
2 and R0j!

3 � R
1j!
3 so we can start computing R1j!

3 from R
1j0
3 = R

0j!
3 .

Similarly, once we �nd R2
1 (or in general, Rk+1

1 ), we can start computing the inner �xpoints

from R2m0
3 = R1m!

3 (R
(k+1)m0
3 = Rkm!

3 ).

The table in Figure 3 illustrates this by showing the relationship between all the di�erent

possible approximation values for R3. Each row can have at most n+1 entries, one for each
approximation to �R2: 2. At �rst glance, it seems possible that each column could have as

many as n2 entries. However, each chain represented by each column can have at most n+1
distinct values. Repeated values only appear when convergence is reached (Rij!

3 = R
ij(!�1)
3 )

and when we start a computation from a previously computed �xpoint (R
(i+1)j0
3 = R

ij!
3 ).

Convergence is reached every time the �xpoint is evaluated, and this �xpoint is evaluated

once for every outer greatest �xpoint approximation of which there can be no more than
n + 1. Since there can be no more than n + 1 evaluations, we can start from a previously

computed �xpoint no more than n times. So the number of repeated values is bounded by
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2n + 1. Thus, the total number of entries in any column is bound by 3n + 2 and the total

number of assignments to R3 during the entire computation is bound by (3n + 2)(n + 1).

This means that there are at most O(n2) iterations performed to compute the innermost

�xpoint.

R!0!
3

�

...
�

R!01
3

�

R!00
3

=
�
�
�
=

�

�

�

R!1!
3

�

...
�

R!11
3

�

R!10
3

=
�
�
�
=

� � � � �

� � � � �

� � � � �

R!!!
3

�

...
�

R!!1
3

�

R!!0
3

=
�
�
�
=

R10!
3

�

...
�

R101
3

�

R100
3

=

�

�

�

R11!
3

�

...
�

R111
3

�

R110
3

=

� � � � �

� � � � �

� � � � �

R1!!
3

�

...
�

R1!1
3

�

R1!0
3

=

R00!
3

�

...

�

R001
3

�

R000
3

�

�

�

R01!
3

�

...

�

R011
3

�

R010
3

� � � � �

� � � � �

� � � � �

R0!!
3

�

...

�

R0!1
3

�

R0!0
3

Figure 3: Monotonicity constraints on approximations to R3

Again, this algorithm for evaluating a �-calculus formula is identical to the naive algo-
rithm except when the main connective is a �xpoint operator. To facilitate explanation, we

consider only formulas with strict alternation of �xpoints, and in particular, with the form:

F1 � �R1: 1(R1; �R
0
1: 

0
1(R1; R

0
1; F2))

F2 � �R2: 2(R1; R
0
1; R2; �R

0
2: 

0
2(R1; R

0
1; R2; R

0
2; F3))

...
Fq � �Rq: q(R1; R

0
1; : : : ; Rq; �R

0
q: 

0
q(R1; R

0
1; : : : ; Rq; R

0
q))

The pseudocode for this part of the algorithm is given in Figure 4. For computing the

outermost �xpoint (corresponding to R1) we follow the naive algorithm, i.e., start with ?

9



12 if � = �Ri: i(Ri) and i � 2 then

13 Rval := Ti[k1] � � � [ki�1]

14 repeat

15 Rold := Rval

16 Rval := evalrec( i; e [Ri  Rold])

17 until Rval = Rold

18 Ti[k1] � � � [ki�1] := Rval

19 return Rval

20 if � = �R0
i: 

0
i(R

0
i) then

21 ki := 0

22 Rval := >
23 repeat
24 Rval := evalrec( 0

i; e [R
0
i  Rval])

25 ki := ki + 1

26 until ki = j>j
27 return Rval

Figure 4: Pseudocode for the e�cient algorithm

and iterate until convergence. The algorithm uses a table Ti to store the last computed
�xpoint values for the �-variables Ri (for i � 2). Initially, all entries in Ti are ?. The table
Ti is a multi-dimensional table. For the i-th least �xpoint (corresponding to Ri) we index
the table Ti by the iteration counters k1; � � � ; ki�1 of the greatest �xpoints in which the i-th
least �xpoint is nested. When evaluating Ri, we start with the corresponding table value

and iterate until convergence. At the end of the iteration, the table holds the �xpoint value.
When evaluating R0

i, we always begin with > and iterate until convergence. Note that this
algorithm implements the ideas in the previous example.

If we use these ideas, how many steps does the computation take? To try to answer
this question, we look at the number of approximations computed for the Ris and R0

is in
the algorithm. Let Ti denote the number of approximations for Ri, and let T 0

i denote the

number of approximations for R0
i. The �xpoint for R0

i is evaluated at most Ti times (the

number of approximations to the enclosing Ri). Each evaluation can take at most n + 1
iterations for a total of (n+1)Ti approximations. Thus, T 0

i � (n+ 1)Ti. The �xpoint for Ri

has a table Ti with (n + 1)i�1 entries. Because of the monotonicity constraints, each entry
can go through at most n + 1 distinct values. Since there are (n + 1)i�1 entries, we have

a total of (n + 1)i iterations. These iterations correspond to the case when the loop test is

false. In addition, each time we evaluate the �xpoint for Ri we will take one extra step to

detect convergence which will not result in a new value for the corresponding table entry.
We evaluate the �xpoint for Ri at most T 0

i�1 times. Thus we make at most T 0
i�1 iterations

when the loop test is true. In total, we have Ti � (n + 1)i + T 0
i�1. Solving this recurrence,

10



we get:

Ti � i(n+ 1)i

T 0
i � i(n+ 1)i+1

Summing over all �xpoints and expressing the result in terms of the alternation depth d = 2q,

we get that the algorithm takes O
�
d(n + 1)d=2+1

�
iterations when computing the �xpoints in

a formula with strict alternation. In comparison, previously known algorithms may require

O(nd) iterations.

4 Ordered Binary Decision Diagrams (OBDDs)

In this section we give a brief description of an e�cient data structure for representing
boolean functions. Consider the space BFn of boolean functions on n variables x0; x1; � � � ;
xn�1. We assume that there is a total ordering on the boolean variables. The ordering is

given by the index, i.e., xi is ordered before xj i� i < j. The symbol OBDD(f) will denote
the Ordered Binary Decision Diagram (OBDD) for the boolean function f [4]. OBDDs have
the following canonicity property:

Theorem 4.1 (Canonicity Theorem): Given two boolean functions f and g in the space
BFn, OBDD(f) = OBDD(g) i� f = g.

A detailed proof is given in [4].

We will give a succinct explanation of how OBDDs work through an example. For a more
thorough treatment see [4, 6]. Consider the following boolean function f :

f = x0 � x1 � x2

Figure 5 gives the binary tree T corresponding to the boolean function f . Notice that

the binary subtree which we get by following the paths (0; 1) and (1; 0) from the root are
the same. The same is true if we follow the paths (0; 0) and (1; 1). Figure 6 re
ects this

sharing. Notice that the number of nodes is reduced from 15 to 7. In general, the binary

tree corresponding to the parity of n bits has 2n+1 � 1 nodes. The OBDD for the same
function has 2n + 1 nodes. Therefore, in some cases OBDD can be exponentially more

succinct than the straightforward representation. We will use jOBDD(f)j to denote the size
of the OBDD for f , i.e., the number of nodes in OBDD(f). In addition to being a canonical

representation, OBDDs support the usual operations on boolean functions e�ciently. The
complexity of some of the operations is shown below:

� Given the OBDDs for f and g, the OBDD for f _ g and f ^ g can be computed in

time O(jOBDD(f)j � jOBDD(g)j).

� Given the OBDD for f , the OBDD for :f can be computed in time O(jOBDD(f)j).

� Given the OBDD for f , the OBDDs for 9xif and 8xif can be computed in time

O(jOBDD(f)j2).

11
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Figure 6: OBDD for the 3 bit parity function

Variable ordering is extremely important in OBDDs. For example, consider the following

boolean function :

f(x1; � � � ; xn; x
0
1; � � � ; x

0
n) =

n̂

i=1

(xi = x0i)

The OBDD for f with the variable ordering

x1 < x01 < x2 < x02 < � � � xn < x0n

has size 3n + 2. As the following lemma shows, the OBDD for f can have size exponential
in n under some variable orderings. Moreover, there are some functions whose OBDDs have

exponential size under any variable ordering [4].
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Lemma 4.1 Let f(x1; � � � ; xn; x
0
1; � � � ; x

0
n) be the following boolean function:

n̂

i=1

(xi = x0i)

Let F be the OBDD for f such that all the unprimed variables are ordered before all the

primed variables. In this case jF j � 2n.

Proof: Consider two distinct assignments (b1; � � � ; bn) and (c1; � � � ; cn) to the boolean vector

(x1; � � � ; xn). These two assignments can be distinguished because of the following equation:

f(b1; � � � ; bn; b1; � � � ; bn) 6= f(c1; � � � ; cn; b1; � � � ; bn)

Let v1 and v2 be the nodes reached after following the path (b1; � � � ; bn) and (c1; � � � ; cn) from

the top node. Since these two assignments can be distinguished, v1 6= v2. There are 2n

di�erent assignments to the boolean vector (x1; � � � ; xn) and each of them corresponds to a
di�erent node (at level n) in the OBDD F . Therefore, the number of nodes at level n in the
OBDD F is greater than or equal to 2n. 2

5 Translating the �-Calculus into OBDDs

In this section we describe how to use OBDDs in the model checking algorithms described

earlier. First, we show how to encode a transition systemM = (>; T; L) into OBDDs. The
domain > is encoded by the set of values of the n boolean variables x1; � � � ; xn, i.e., > is now
the space of 0-1 vectors of length n. Each variable xi has a corresponding primed variable
x0i. Instead of writing x1; � � � ; xn, we sometimes use the vector notation ~x. For example,
we write OBDDp(x1; � � � ; xn) as OBDDp(~x). Given an interpretation we build the OBDDs

corresponding to closed �-calculus formulas in the following manner.

� Each atomic proposition p has an OBDD associated with it. We will denote this
OBDD by OBDDp(~x). OBDDp(~x) has the property that ~y 2 f0; 1gn satis�es OBDDp

i� ~y 2 L(p).

� Each program letter a has an ordered binary decision diagram OBDDa(~x; ~x
0) associated

with it. A 0-1 vector (~y; ~z) 2 f0; 1g2n satis�es OBDDa i�

(~y; ~z) 2 T (a)

Now we describe the encoding of the semantic sets of formulas into OBDDs. Assume

that we are given a �-calculus formula � with free relational variables R1, � � �, Rk. A[Ri]

gives the OBDD corresponding to the relational variable Ri. AhR  BRi creates a new

association by adding a relational variable R and associating an OBDD BR with R. In other
words, A can be considered as an environment with OBDD representation. The procedure

B given below takes a �-calculus formula � and an association list A (A assigns an OBDD

to each free relational variable occuring in �) and returns an OBDD corresponding to the

semantics of �.
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� B(p;A) = OBDDp(~x).

� B(Ri;A) = A[Ri].

� B(:�;A) = :B(�;A)

� B(� ^  ;A) = B(�;A) ^ B( ;A).

� B(� _  ;A) = B(�;A) _ B( ;A).

� B(hai�;A) = 9~x0(OBDDa(~x; ~x
0) ^B(�;A)(~x0))

� B([a]�;A) = B(:hai:�;A).

The second equation uses the dual formulation for [a].

� B(�R:�;A) = FIX(�;A;FALSE-BDD).

� B(�R:�;A) = FIX(�;A;TRUE-BDD).

The OBDDs for the boolean functions false and true are denoted by FALSE-BDD and

TRUE-BDD respectively. Notice that � has an extra free relational variable R. FIX is
described in Figure 7.

1 function FIX(�;A; BR)

2 result-bdd = BR

3 do

4 old-bdd = result-bdd
5 result-bdd = B(�;AhR old-bddi)
6 while (not-equal(old-bdd, result-bdd))
7 return(result-bdd)

Figure 7: Pseudocode for the function FIX

Now we give a short example to illustrate our point.

Example 5.1 Assume that the state space > is encoded by n boolean variables x1; � � � ; xn.
Consider the following formula:

� = �Z:(q ^ Y _ haiZ)

Notice that the variable Y is free in �. Assume that the interpretation for q is an OBDD

OBDDq(~x). Similarly, the OBDD corresponding to the program letter a is OBDDa(~x; ~x0).
Also assume that we are given an association list A which pairs the OBDD BY (~x) with Y .

In the routine FIX the OBDD result-bdd is initially set to:

N0(~x) = FALSE-BDD

14



Let N i be the value of result-bdd at the i-th iteration in the loop of the function FIX. At

the end of the iteration the value of result-bdd is given by:

N i+1(~x) = OBDDq(~x) ^BY (~x) _ 9~x
0(OBDDa(~x; ~x

0) ^N i(~x0))

The iteration stops when N i(~x) = N i+1(~x).

6 Branching Time Temporal Logics

Let AP be a set of atomic propositions. A Kripke structure overAP is a tripleM = (S; T; L),

where

� S is a �nite set of states,

� T � S � S is a transition relation, which must be total (i.e., for every state s1 there
exists a state s2 such that (s1; s2) 2 T ).

� L : S ! 2AP is a labeling function which associates with each state a set of atomic
propositions that are true in the state.

There are two types of formulas in the temporal logic CTL?: state formulas (which are
true in a speci�c state) and path formulas (which are true along a speci�c path). The
state operators in CTL? are: A (\for all computation paths"), E (\for some computation
paths"). The path operators in CTL? are: G (\always"), F (\sometimes"),U (\until"), and

V (\unless"). Let AP be a set of atomic propositions. A state formula is either:

� p, if p 2 AP ;

� :f or f _ g, where f and g are state formulas; or

� E(f) where f is a path formula.

Path formulas are de�ned as follows:

� every state formula is a path formula; and

� if f and g are path formulas, then :f , f _ g, X f , f U g, and f V g are path formulas.

CTL? is the set of state formulas generated by the above rules.

We de�ne the semantics of CTL? with respect to a Kripke structureM = (S; T; L). A path

inM is an in�nite sequence of states � = s0; s1; ::: such that, for every i � 0; (si; si+1) 2 T . �
i

denotes the su�x of � starting at si. �[i] denotes the i-th state on the path �. The starting
state of path � is �[0]. We use the standard notation to indicate that a state formula f holds

in a structure. M;s j= f means that f holds at the state s in the structure M . Similarly,

M;� j= f means that the path formula f is true along the path �. Assume that f1 and f2
are state formulas and g1 and g2 are path formulas, then the relation j= is de�ned inductively
as follows:
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1. s j= p, p 2 L(s)

2. s j= :f1 , s 6j= f1

3. s j= f1 _ f2 , s j= f1 or s j= f2

4. s j= E(g1), there exists a path � starting with s such that � j= g1

5. � j= f1, �[0] j= f1

6. � j= :g1 , � 6j= g1

7. � j= g1 _ g2 , � j= g1 or � j= g2

8. � j= X g1 , �1 j= g1

9. � j= g1 U g2 , there exists k � 0 such that �k j= g2 and for all 0 � j < k; �j j= g1.

10. � j= g1 V g2 , for every k � 0, if �j 6j= g1 for all 0 � j < k, then �k j= g2.

CTL is the subset of CTL? in which the path formulas are restricted to be:

� if f and g are state formulas, then X f , f U g, and f V g are path formulas.

The basic modalities of CTL are EX f , EG f , and E(f U g), where f and g are again CTL

formulas. The operator E(f V g) can be expressed as follows:

E(f V g) = E((:f ^ g)U f ^ g) _EG(:f ^ g)

EF f = E(trueU f)

The operators AG f , AF f and A(f U g) can be expressed in terms of the basic modalities
described above.

AG f = :EF:f

AF f = :EG:f

A(f U g) = :E(:f V :g)

Next, we discuss the issue of fairness. In many cases, we are only interested in the correctness

along paths with certain conditions. For example, if we are verifying a protocol with a

scheduler, we may wish to consider only executions where processes are not ignored by the

scheduler, i.e., every process is given a chance to run in�nitely often. This type of fairness
constraint cannot be expressed in CTL [7]. In order to handle such properties we have to
modify the semantics of CTL. A fairness constraint can be an arbitrary set of states, usually

described by a CTL formula. Generally, there will be several fairness constraints. In this

paper we will denote the set of all fairness constraints by H = fh1; � � � ; hng. We have the
following de�nition of a fair path.

De�nition 6.1 Given a Kripke Structure M = (S; T; L) and a set of fairness constraints

H = fh1; � � � ; hng, a path � in M is called fair i� each CTL formula hi is satis�ed in�nitely

often on the path �.
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The semantics of CTL has to be modi�ed to handle fairness constraints H. The basic idea

is to restrict path quanti�ers to fair paths. The formal de�nition is given below:

� s j= EXH f i� there exists a fair path � starting from the state s such that �[1] j= f .

� s j= E(g1UH g2) i� there exists a fair path � starting from the state s and there exists

k � 0 such that �[k] j= g2 and for all 0 � j < k; �[j] j= g1.

� s j= EGH f i� there exists a fair path � starting from the state s such that for all

i � 0, �[i] j= f .

7 Translating CTL into the �-Calculus

In this section we give a translation of CTL into the propositional �-calculus. The algorithm
Tr takes as its input a CTL formula and outputs an equivalent �-calculus formula with only
one action a.

� Tr(p) = p.

� Tr(:f) = :Tr(f).

� Tr(f ^ g) = Tr(f) ^ Tr(g).

� Tr(EX f) = haiTr(f).

� Tr(E(f U g)) = �Y:(Tr(g) _ (Tr(f) ^ haiY )).

� Tr(EG f) = �Y:(Tr(f) ^ haiY ).

Note, that any resulting �-calculus formula is closed. Therefore, we can omit the environment
in the set [[�]]M .

Lemma 7.1 Let M = (S; T; L) be a Kripke Structure, f be a CTL formula, and a be an
action with interpretation T . Consider the predicate transformer � .

� (Z) = f ^ haiZ

= fs 2 S j s j= f ^ 9s0 2 S((s; s0) 2 T ^ s0 2 Z)g

� satis�es the following conditions:

� � is monotonic.

� Let � i0(>) be the limit of the sequence > � � (>) � � � �. For every s 2 S, if s 2 � i0(>)

then s j= f , and there is a state s0 such that (s; s0) 2 T and s0 2 � i0(>).
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Proof: Let P1 � P2. In this case haiP1 � haiP2, i.e., the successor relation is monotonic.

Therefore, � (P1) � � (P2). Since � i0(>) is the �xpoint of the predicate transformer � , we

have the following equation:

� (� i0(>)) = � i0(>)

Let s 2 � i0(>). Using the equation given above we get that s 2 � (� i0(>)). By de�nition of

� we get that s j= f and there exists a state s0, such that (s; s0) 2 T and s0 2 � i0(>). 2

The theorem given below proves the correctness of the translation algorithm Tr.

Theorem 7.1 Let M = (S; T; L) be the underlying Kripke Structure. Let � be a CTL

formula. Let the interpretation of the action a be T . An atomic proposition p in Tr(�) has

the interpretation L(p). The set of states > is S. In this case, for all s 2 S

s j= � , s 2 [[Tr(�)]]M

Proof: The proof is by structural induction on �.

� � = p: In this case the result is true by de�nition.

� � = :f : By de�nition [[Tr(�)]]M = S � [[Tr(f)]]M . The result follows by using the
induction hypothesis on f .

� � = f ^ g: By de�nition [[Tr(�)]]M = [[Tr(f)]]M \ [[Tr(g)]]M . The result follows by
using the induction hypothesis on f and g.

� � = EX f : Let Sf be the set of states where f is true. By the induction hypothesis,
[[Tr(f)]]M = Sf . The set of states satisfying � is the set of states S1 which have a
successor in Sf . It is clear from the semantics of hai that [[Tr(�)]]M = S1.

� � = EG f : Let Y1 be the set of states s such that s j= EG f . Let � : 2S ! 2S be the
following predicate transformer

� (Z) = [[Tr(f)]]M \ ([[haiX]]M e [X  Z])

By de�nition, the greatest �xpoint of � is given by
T
i �

i(>), where � 0(>) = >, and
� i+1(>) = � (� i(>)). Using the semantics of EG we get that if s 2 Y1, then there

exists a path � starting from s such that each state on the path satis�es f . Therefore,
if s 2 Y1, then s has a successor s

0 such that (s; s0) 2 T , s j= f , and s0 j= EG f . Hence

Y1 is a �xpoint for the predicate transformer � , i.e.,

� (Y1) = Y1

Since
T
i �

i(>) is the greatest �xpoint of � , we have the following inclusion:

Y1 �
\

i

� i(>)
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Now assume that s 2
T
i �

i(>). By Lemma 7.1, s is the start of an in�nite path � such

that each state s0 on the path � satis�es f . Therefore, we have the following inclusion:

Y1 �
\

i

� i(>)

Using the two equations we get that Y1 is the greatest �xpoint of the predicate trans-

former � .

� � = E(f U g): Let S1 be the set of states s such that s j= E(f U g). Let � : 2S ! 2S

be the following predicate transformer:

� (Z) = [[Tr(g)]]M [ ([[Tr(f)]]M \ ([[haiX]]M e [X  Z]))

First, we will show that S1 is a �xpoint of � , i.e.,

� (S1) = S1

By de�nition, s j= E(f U g) i� there exists a path � starting from s such that there

exists a k � 0 with the property that �k j= g and �i j= f (for 0 � i < k). Equivalently,
s j= E(f U g) i� s j= g or s j= f and there exists a state s1 such (s; s1) 2 T and
s1 j= E(f U g). From this condition it is clear that S1 is a �xed point of the predicate
transformer � . By de�nition, the least �xpoint of � is given by

[

i

� i(?)

Since S1 is a �xpoint for � , we have that

S1 �
[

i

� i(?)

Next we prove that

S1 �
[

i

� i(?)

which proves that S1 is equal to the least �xpoint of the predicate transformer � .
By de�nition, if s 2 S1, then there exists a path � and a k � 0 such that �k j= g

and �j j= f (for j < k). We will prove by induction on k that s 2 � k(?). The

basis case is trivial. If k = 0, then s j= g and therefore s 2 � (?), which is equal to
[[Tr(g)]]M [ ([[Tr(f)]]M \ [[hai?]]M ) = [[Tr(g)]]M .

For the inductive step, assume that the above claim holds for every s and every k � m.

Let s be the start of a path � = s0; s1; � � � such that sm+1 j= g and for every i < m+1,
si j= f . By induction hypothesis s1 2 �m(?). Notice that s0 = s 2 [[Tr(f)]]M
and s 2 hai�m(?). Therefore, by de�nition s 2 �m+1(?). Hence, if s 2 S1, then

s 2
S
i �

i(?).

Using Theorem 7.1 we have the following result:
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Theorem 7.2 Given a Kripke Structure M = (S; T; L), an initial state s0 2 S, and a CTL

formula f , one can decide in O(jSjjf j) iterations whetherM;s0 j= f . Where jf j denotes the

number of symbols in the formula f .

Proof: Consider the following formula:

�Y:(�Z:(q _ (p ^ haiZ)) ^ haiY )

Notice that the formula given above is Tr(EG(E(p U q))). Since the inner least �xpoint

does not use the relational variable Y ( associated with the outer greatest �xpoint), we can

compute it �rst and reuse that value in the outer �xpoint computation. Therefore, if we

compute the inner �xpoint �rst, we can evaluate the formula given above in O(2jSj) itera-

tions. Notice that given a CTL formula f , Tr(f) has the property that the inner �xpoints

never use the variables associated with the outer �xpoint. By evaluating the �xpoints in
the nesting order (evaluating the inner �xpoints �rst), we do not have to recompute the
�xpoints. Therefore, the total complexity is the sum of the complexities for evaluating each

�xpoint independently. This is bounded by O(jSjjf j).1 2

Given fairness constraints H = fh1; � � � ; hng, we extend the translation algorithm Tr in the
following way:

� Tr(EGH f) = �Y:
�
Tr(f) ^ hai

Vn
i=1 �X: [(Tr(f) ^ haiX) _ (Y ^ Tr(hi))]

�

We introduce the following formula which is satis�ed at a state s i� there is a fair path �
starting from s.

� fair = EGH True

� Tr(EXH f) = hai(Tr(f) ^ Tr(fair)).

� Tr(E(f UH g)) = �Y:(Tr(g) ^ Tr(fair) _ (Tr(f) ^ haiY )).

We will give an informal proof of correctness for the EGH case. Consider the following
formula:

�Y:(P ^ hai�X: [(P ^ haiX) _ (Y ^ h)])

This corresponds to the formula Tr(EGH f), where H = fhg and P = Tr(f). First, note

that the condition \h holds in�nitely often along a path" is equivalent to saying that from
any point along that path in a �nite number of steps we will reach a state where h holds. To

understand the formula given above, notice that �X:((P ^ haiX) _ (Y ^ h)) means that \P

holds until Y ^ h, and Y ^ h is reachable in a �nite number of steps". Since the outer �xed

point �Y:(P ^ � � �) indicates that this property holds globally along the path, the formula

exactly corresponds to the desired property.

1By de�nition of alternation depth given in [1], the formula Tr(f) always has alternation depth one.
Hence, the linear complexity of CTL model checking follows directly from the algorithm in [1].
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8 Simulation Preorders and Bisimulation Equivalences.

8.1 Simulation and bisimulation.

In this section we will use essentially the same de�nition of a transition system that was

introduced in Section 2, except for two special program letters � and ". The letter � repre-

sents the idle action; its interpretation is always �xed: T (� ) = f(s; s) j s 2 Sg. The program

letter " denotes the invisible action from CCS [16] and will be used in the de�nition of the

weak simulation and bisimulation relations [17].

De�nition 8.1 A relation E � S � S is called a simulation relation, if for every (s; s0) 2 E

the following condition holds:

8a 2 Act:8q 2 S: if s
a
! q then 9q0 2 S:s0

a
! q0 and (q; q0) 2 E:

De�nition 8.2 A relation E � S�S is called a bisimulation if E and E�1 are both simulation
relations. In other words, E satis�es the following conditions: (s; s0) 2 E i�

(i) 8a 2 Act:8q 2 S: if s
a
! q then 9q0 2 S:s0

a
! q0 and (q; q0) 2 E;

(ii) 8a 2 Act:8q0 2 S: if s0
a
! q0 then 9q 2 S:s

a
! q and (q; q0) 2 E:

We de�ne the simulation preorder as follows:

s � s0 i� there exists a simulation relation E such that (s; s0) 2 E.

We de�ne bisimulation equivalence in a similar manner:

s � s0 i� there exists a bisimulation relation E such that (s; s0) 2 E.

It is straightforward to check that � is a preorder. In fact, it is the maximal simulation
relation under inclusion. It is also possible to show that bisimulation equivalence � is an
equivalence relation. Moreover, it is the maximal bisimulation relation under inclusion.

8.2 Encoding simulation and bisimulation into the �-calculus.

In order to check if the initial states of two transition systems are bisimilar using the propo-

sitional �-calculus, we �rst need to construct a new transition system. Given two transition

systems M = (S; T; L) over Act and M 0 = (S; T 0; L0) over Act, we de�ne the product
~M =M �M 0 over ~Act as follows: ~M = ( ~S; ~T; ~L), where

� ~Act = Act�Act = fa�; �a j a 2 Act and b 2 Actg,

� ~S = S � S,

� (s; s0)
ab
! (q; q0) i� s

a
! q and s0

b
! q0.

� ~L may be arbitrary in this case.
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We assume that M and M 0 have the same state and action sets. This is a technical issue

because we can always de�ne the transition systems on larger state and action sets.

Theorem 8.1 Let s and s0 be the states of the two transition systems M and M 0. Then

s � s0 i� the following formula holds in the state (s; s0) of the transition system ~M :

�X:
� ^

a2Act

[a� ] h�aiX
�

Proof: Consider the de�nition of a simulation relation:

(s; s0) 2 E i� 8a 2 Act:8q 2 S: if s
a
! q then 9q0 2 S:s0

a
! q0 and (q; q0) 2 E:

This is the same as the equation

E �
^

a2Act

[a� ] h�aiE

in the transition system ~M (see the semantics of modalities in Section 2, and de�nition of
~M). Therefore, E is a simulation relation i� it is a �xpoint of the above equation. We show

that � is the greatest �xpoint. Let Y denote the set �X:
�V

a2Act [a� ] h�aiX
�
.

�: s � s0 implies that (s; s0) 2 E for some simulation relation E. Since E is a �xpoint of the

equation, we have E � Y by de�nition of the greatest �xpoint, therefore (s; s0) 2 Y.

�: Let (s; s0) 2 Y. Since Y satis�es the �xpoint equation, it is a simulation relation, hence
s � s0.

2

Theorem 8.2 Two states s and s0 are bisimilar (s � s0) i� the following formula holds in
the state (s; s0) of the model ~M :

�X:
� ^

a2Act

[a� ] h�aiX ^ [�a] ha� iX
�

The proof of this theorem is almost identical to the proof of the previous theorem.

Obviously, the alternation depth of the formulas is one, therefore the complexity is

O(j ~Sj) iterations, where the size of ~S is jSj2. The time complexity is O(j ~Sjj ~Actjj ~M j) =
O(jSj2jActjjM jjM 0j). An algorithm for bisimulation equivalence with time complexity
O(jActj(jT j+ jT 0j) log(jSj)) is given in [18]. However, it is not clear if this algorithm can be

modi�ed to compute the simulation preorder or if it can be adapted to use OBDDs.

8.3 Weak simulation and bisimulation.

Weak simulation preorder and weak bisimulation equivalence require a more elaborate en-
coding. The de�nition of weak (bi)simulation is similar to (bi)simulation. The di�erence is

that each of the transition systems is allowed to perform an unbounded but �nite number

of invisible actions ". Formally, �rst de�ne a relation ) by

s
a
) q i� 9s1; s2:s

"�

! s1
a
! s2

"�

! q;

and s
"�

! q means that q is reachable from s by 0 or more "-transitions.
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De�nition 8.3 A relation E � S � S is called a weak simulation with invisible action ",

when (s; s0) 2 E i�

8a 2 Act:8q 2 S: if s
a
) q then 9q0 2 S:s0

a
) q0 and (q; q0) 2 E:

De�nition 8.4 A relation E � S � S is called a weak bisimulation with invisible action ",

if (s; s0) 2 E i�

(i) 8a 2 Act:8q 2 S: if s
a
) q then 9q0 2 S:s0

a
) q0 and (q; q0) 2 E;

(ii) 8a 2 Act:8q0 2 S: if s0
a
) q0 then 9q 2 S:s

a
) q and (q; q0) 2 E:

As before, we introduce a preorder called weak simulation preorder:

s �� s0 i� there exists a weak simulation relation E such that (s; s0) 2 E,

and an equivalence called weak bisimulation equivalence:

s � s0 i� there exists a weak bisimulation relation E such that (s; s0) 2 E.

To encode the weak (bi)simulation in the propositional �-calculus we again make use of

the transition system ~M . De�ne the abbreviations:

h"�; a; "�i� �df �X:(hai(�Y:� _ h"iY ) _ h"iX)

["�; a; "�]� �df :h"
�; a; "�i:�

To understand the formulas better, notice that informally they can be viewed as translations
of EF(haiEF �) and AG([a]AG �), where CTL operators refer to "-paths. Now, it is
straightforward to show that the following theorems hold:

Theorem 8.3 Let s and s0 be states of the two transition systems. Then s �� s0 i� the
following formula holds in the state (s; s0) of the transition system ~M :

�X:
� ^

a2Act

[("� )�; a� ; ("� )�] h(�")�; �a; (�")�iX
�

Theorem 8.4 Two states s and s0 are weakly bisimilar (s � s0) i� the following formula
holds in the state (s; s0) of the model ~M :

�X:
� ^

a2Act

[("� )�; a� ; ("� )�] h(�")�; �a; (�")�iX
V

[(�")�; �a; (�")�] h("� )�; a� ; ("� )�iX
�

Although there are �ve levels of nesting in these formulas, the alternation depth is only

two. Therefore, we can compute it by the algorithm given in [11] using O(j ~Sj2j ~Actj2) itera-

tions or O(j ~Actj3j ~M jj ~Sj2) time. Recall that each iteration can take upto O(j ~Actjj ~M j) time.

However, there is another algorithm by H. Andersen [2] that can compute the �xpoints in
O(jActj2j ~Sjj ~M j) time. The algorithm in [18] can also be adapted to compute weak bisim-

ulation equivalence by precomputing the transitive closure of the " relation. However, the
expense of this step dominates the cost of the entire computation. Again, it is not clear that

OBDDs can be used in the last two algorithms.
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9 Conclusion

In this paper, we show the importance of the propositional �-calculus by giving translations

of various graph-based veri�cation algorithms into the �-calculus. We also present an OBDD

based algorithm for �-calculus model checking which has proved to be extremely e�cient

in practice. Finally, we give the best known algorithm for evaluating �-calculus formulas.

However, there is still much work to be done in each of these areas.

Although OBDDs do not reduce the worst-case complexity of the model checking prob-

lem for the �-calculus, their use in model checking has had an enormous e�ect on formal

veri�cation. Before the use of OBDDs, it was only possible to verify models with at most

106 states [7]. By using the OBDD techniques described in this paper, in practice, it is now

possible to verify examples with up to 10120 states and several hundred state variables [5].

However, there is no theoretical framework which explains when OBDDs will work well in

practice. Our algorithm does not depend on the data structure used to represent boolean
functions, so it should be possible to use any better data structures that may be discovered.

In addition to the veri�cation problems we have considered, there are other graph theo-
retic problems that can be encoded in the �-calculus. An important question is how useful
these OBDD and �xpoint techniques are for problems like �nding minimum spanning trees,

determining graph isomorphism, etc. For example, let E(u; v) be the edge relation for a
directed graph and let each vertex v be a state encoded by an assignment ~v to the boolean
variables ~x = x1; : : : ; xk. The formula

�(~x) � �R:~x _ haiR

computes the set of states reachable from the state encoded by the assignment to ~x, where
the interpretation for the program letter a is the edge relation E. Then the graph satis�es
the formula

[~u! �(~v)] ^ [~v! �(~u)]

if and only if the two vertices u and v are in the same strongly connected component. In
general, the graph is strongly connected if and only if every vertex satis�es the formula

8~x:�(~x):

Although strictly speaking this is not a �-calculus formula according to our syntax, recall
that we allow quanti�cation over boolean variables in our translation of the �-calculus into
OBDDs.

We also discuss e�cient evaluation algorithms, which exploit monotonicity properties

when evaluating �xpoints. However, these algorithms remain exponential in the alternation
depth. We conjecture that there is no polynomial-time algorithm for determining if a state

satis�es a given formula. Consider an algorithm that computes least �xpoints by iterating
and that guesses greatest �xpoints. The guess for a greatest �xpoint can be easily checked

to see that it really is a �xpoint. Furthermore, while we cannot verify that it is the greatest

�xpoint, we know that the greatest �xpoint must contain any veri�ed guess. Then by
monotonicity, the �nal value computed by this nondeterministic algorithm will be a subset

of the real interpretation of the formula. The state in question satis�es the formula if and
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only if it is in the set computed by some run of the algorithm. Also note that we can negate

formulas, so the complexity of determining if a state satis�es a formula is the same as the

complexity of determining if a state does not satisfy the formula. Thus, the problem is in

the intersection of NP and co-NP. This suggests that our conjecture will be very di�cult to

prove.
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